28 VOLT INPUT - 15 WATT

FEATURES

No cross regulation on dual outputs

- Operating temperature -55° to +125°C
- · Input voltage range 16 to 50 VDC
- · Transient protection 80 V for 120 ms
 - 12 Vout single and dual to 75 V
 - 15 Vout single and dual to 60 V
- · Fully isolated
- · Fixed frequency switching
- · Output trim on single output models
- · Inhibit and sync functions
- · High power density, up to 83% efficiency

MODELS VDC OUTPUT							
SINGLE 3.3 5 12 15	DUAL ±5 ±12 ±15	TRIPLE +5 & ±12 +5 & ±15					

DESCRIPTION

Interpoint's MHV Series™ of DC/DC converters offers a wide input voltage range of 16 to 50 VDC and a choice of nine different output voltage configurations comprised of single, dual or triple outputs. The 3.3 volt single, 5 volt single and dual and the triple output models will withstand transients of up to 80 volts for up to 120 milliseconds while maintaining output voltages. The 12 volt single and dual outputs will withstand transients up to 75 volts and the 15 volt single and dual outputs will withstand up to 60 volts for 120 milliseconds. The MHV Series operates at 15 watts of output power (10 watts for the 3.3 volt single output) over the military temperature range of -55°C to +125°C while maintaining low input and output noise.

CONVERTER DESIGN

MHV Series DC/DC converters are switching regulators that use continuous flyback conversion topology with a clock frequency of approximately 600 kHz. MHV Series converters incorporate two pulse width modulators (PWM) with one PWM phase shifted 180° from the other to create a dual phase/phase-shifted operation. Each of the PWMs operates at approximately one-half (300 kHz) of the clock frequency. This proprietary technology minimizes input ripple and improves efficiency. On singles the output ripple is reduced. Cross regulation is eliminated on dual output models which are independently regulated and do not require load balancing or minimum loading. On triple output models, this design provides completely independent regulation with no cross regulation effect between the main and auxiliary outputs and no minimum loading is required on the main output.

INHIBIT FUNCTION

The converter is enabled when the inhibit terminal is left unconnected. When the inhibit terminal is pulled low (<0.8 V) the converter shuts down, typically drawing 8.4 mA at 28 Vin or 15 mA at 50 Vin. Sinking current required is Vin / 3.3 K ohm.

SYNCHRONIZATION FUNCTION

Applying an external signal of 40% to 60% duty cycle and 490 to 710 kHz for singles and duals output models will synchronize the converter to your system requirements. For triple output models the external frequency range is 500 to 700 kHz. Free run clock frequency is approximately 600 kHz. If not used, the sync terminal must be left unconnected.

TRIM

Single output converters feature a trim range of as low as 80% to as high as 110% of Vout nominal, depending on the model. To trim up, connect a resistor from output common (pin 4) to the trim terminal (pin 3). To trim down, connect a resistor from the positive output (pin 5) to the trim terminal (pin 3). See Figure 4 and trim tables for more information.

SCREENING

The converters are offered with standard screening, "ES" screening, or fully compliant to "883" MIL-PRF-38534 Class H screening. Standard microcircuit drawings (SMD) are available.

28 VOLT INPUT - 15 WATT

UNDERVOLTAGE LOCKOUT

An undervoltage lockout of approximately 7 VDC keeps system current levels low during startup. Low line dropout typically occurs at approximately 12 Vin to 17 Vin depending on model. See Figures 12, 16 and 17.

SHORT CIRCUIT PROTECTION

Under short circuit conditions of 130% or more of full load current, the converter will protect itself by shutting down. Short circuit duration should be brief because power dissipation may cause internal temperatures to rise rapidly. Restart is automatic upon removal of the short circuit.

OUTPUT VOLTAGE OPTIONS

The MHV Series converters are capable of providing other output voltage options in addition to those characterized on this datasheet. Contact your sales representative to discuss other output voltage options, www.interpoint.com/contacts.

US PATENTS

Interpoint converters may use one or more of the following US patents 5,521,807, 5,694,303, and 5,631,822.

SIMPLIFIED SCHEMATIC DIAGRAM

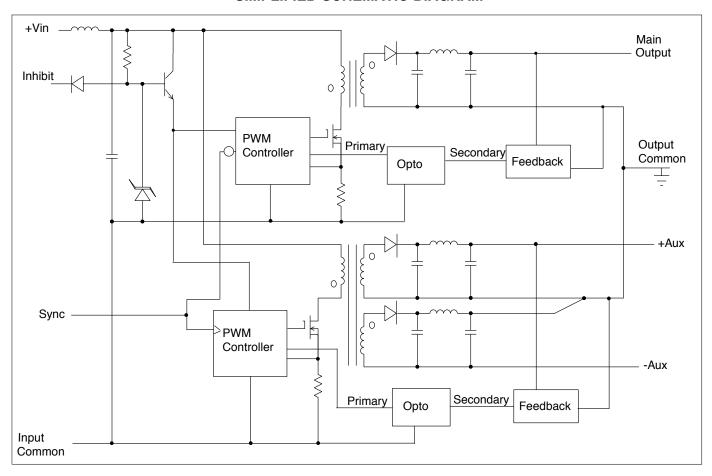


FIGURE 1: MHV TRIPLE BLOCK DIAGRAM

28 VOLT INPUT - 15 WATT

OPERATING CONDITIONS AND CHARACTERISTICS

Input Voltage Range

- 16 to 50 VDC continuous
- · 80 VDC for 120 ms transient
 - ▶ 12 Vout single and dual to 75 V
 - ▶ 15 Vout single and dual to 60 V

Output Power

• 15 watts (10 watts MHV283R3S)

Lead Soldering Temperature (10 sec per lead)

• 300°C

Storage Temperature Range (T_C)

• -65°C to +150°C

Case Operating Temperature (T_C)

- -55°C to +125°C full power
- · -55°C to +130°C absolute

Derating Output Power/Current

· Linearly from 100% at 125°C to 0% at 130°C

Output Voltage Temperature Coefficient

• 100 ppm/°C typical

Current Limit

130% of full load typical at 25° T_C

Isolation at 25° T_C

• 100 megohm minimum at 500 V

Audio Rejection

30 dB typical

Conversion (Switching) Frequency

- Free run mode (each PWM) 300 kHz typical
 - 245 kHz. min, 355 kHz. max (T_C = -55° to +125°C)

Undervoltage Lockout

• 7 V input typical

Low Line Dropout

- Typically occurs at 12 Vin to 17 Vin depending on model
- See Figures 12, 15 and 21

SYNC AND INHIBIT

Sync In (twice the PWM conversion frequency)

- · Input (clock) frequency
 - Single and dual output models 490 to 710 kHz
 - Triple output models 500 to 700 kHz
- Duty cycle 40% min, 60% max
- Active low 0.8 V max
- · Active high 4.5 V min, 10 V max
- Referenced to input common
- · If not used, leave unconnected

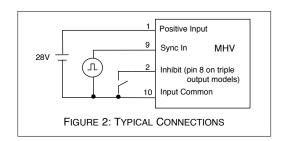
Inhibit

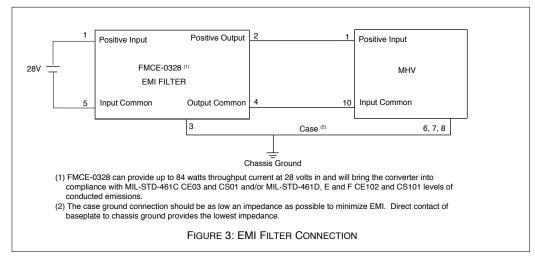
- · Active low (output disabled)
 - Active low voltage ≤0.8 V
 - ► Inhibit pin source current
 - Typically 8.4 mA at 28 Vin, or 15 mA at 50 Vin
 - Sinking current required is Vin / 3.3 K ohms
 - Referenced to input common
- · Active high (output enabled)
 - Open collector
 - Unconnected or 11.5 to 50 V
 - Open pin voltage 11 V typ

MECHANICAL AND ENVIRONMENTAL

Size (maximum)

- · Non-flanged Single and dual output models
 - 2.125 x 1.125 x 0.400 inches (53.98 x 28.58 x 10.16 mm). See case H2 for dimensions.
- · Triple output models
 - ► 1.950 x 1.350 x 0.405 inches (49.53 x 34.29 x 10.29 mm). See case F1 for dimensions.
- · Flanged Single and dual output models
 - 2.910 x 1.125 x 0.400 inches (73.91 x 28.58 x 10.16 mm). See case K3 for dimensions.
- · Triple output models
 - 2.720 x 1.350 x 0.405 inches (69.09 x 34.29 x 10.29 mm). See case J1 for dimensions.


Weight (maximum)


· 60 grams typical

Screening

 Standard, ES, or 883 (Class H). See Screening Tables 1 and 2 for more information.

28 VOLT INPUT - 15 WATT

TRIM - SINGLE OUTPUT MODELS ONLY

CALCULATED TRIM

$$\begin{split} & \text{Trim down:} & \ \ R_T \ (K\Omega) = \left(\frac{(V_0 - 2.5)}{V_{o \ nominal} - V_0} \right) \ \ A - B \\ & \text{Trim up:} & \ \ R_T \ (K\Omega) = \left(\frac{2.5A}{V_0 - V_0 \ nominal} \right) - B \end{split}$$

V_o = desired output voltage

	FORMULA VALUES BY MODEL									
MODEL:	DEL: 3.3 V 5 V 12 V 15 V									
Α	3.7	3.7	14	18.0						
В	10	10	30	80						

QUICK REFERENCE TRIM TABLE											
		V _{OUT} NOMINAL									
MODEL	MODEL 110% 106% 102% 95% 90% 80										
		F	R _{TRIM} (R _T	-) K ohms	6						
MHV283R3S	18	36	128	4	N/A	N/A					
MHV2805S	8	20	81	23	5	N/A					
MHV2812S	N/A	19	116	177	67	11					
MHV2815S	0.3	21	122	255	104	28					

Notes

Notes that it is a negative value, the desired output voltage is outside the allowed trim

range. Calculated values of $R_{\rm T}$ are ±15%.

When trimming up, do not exceed the maximum output power.

When trimming down, do not exceed the maximum output current

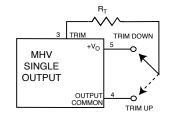
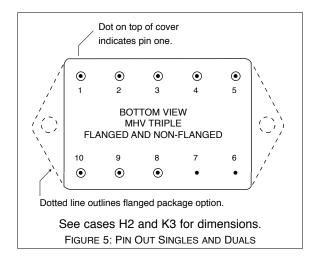
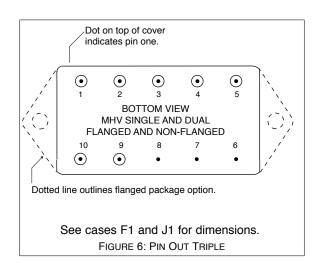
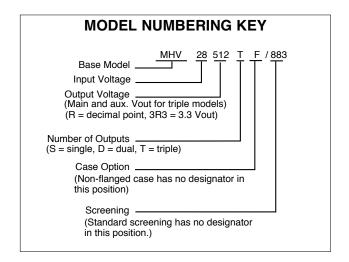




FIGURE 4: MHV SINGLE OUTPUT TRIM

28 VOLT INPUT - 15 WATT


	PIN OUT									
Pin	Single Output	Dual Output	Triple Output							
1	Positive Input	Positive Input	Positive Input							
2	Inhibit	Inhibit	Main (+5) Output							
3	Trim	Positive Output	Output Common							
4	Output Common	Output Common	Negative Aux. Output							
5	Positive Output	Negative Output	Positive Aux. Output							
6, 7	Case Ground	Case Ground	Case Ground							
8	Case Ground	Case Ground	Inhibit							
9	Sync In	Sync In	Sync In							
10	Input Common	Input Common	Input Common							

PINS NOT IN USE						
Case User's discretion						
Inhibit	Leave unconnected					
Sync In	Leave unconnected					

28 VOLT INPUT - 15 WATT

SMD NUMBERS							
STANDARD MICROCIRCUIT DRAWING (SMD)	MHV SIMILAR PART						
5962-9852801HXC	MHV283R3S/883						
5962-9852201HXC	MHV2805S/883						
5962-9852301HXC	MHV2812S/883						
5962-9852401HXC	MHV2815S/883						
5962-9852501HXC	MHV2805D/883						
5962-9852601HXC	MHV2812D/883						
5962-9852701HXC	MHV2815D/883						
5962-9673001HXC	MHV28512T/883						
5962-9673101HXC	MHV28515T/883						

Flanged SMD numbers for the MHV Series of converters have the suffix HZC instead of HXC. For exact specifications for an SMD product, refer to the SMD drawing available at www.dscc.dla.mil/programs/smcr.

MODEL SELECTION ON THE LINES BELOW, ENTER ONE SELECTION FROM EACH CATEGORY TO DETERMINE THE MODEL NUMBER.

CATEGORY	MHV28 Base Model and Input Voltage	Output Voltage ¹	Number of Outputs ²	Case Option ³	Screening ⁴
		3R3, 05, 12, 15	S	(NON-FLANGED	(STANDARD leave blank)
SELECTION	MHV28 is the only available selection	05, 12, 15	D	leave blank)	ES
		512, 515	Т	F (FLANGED)	883 (CLASS H)

Notes

- 1. Output Voltage: An R indicates a decimal point. 3R3 is 3.3 volts out. The value of 3R3 is only available in single output models. The 512 and 515 triple output converters are +5 volt main and ±12 or ±15 volt auxiliaries.
- 2. Number of Outputs: S is a single output, D is a dual output, and T is a triple output
- 3. Case Options: For the standard case (cases F1 and H2) leave the case option blank. For the flanged case option (cases J1 and K3), insert the letter F in the Case Option position.
- 4. Screening: For standard screening leave the screening option blank. For other screening options, insert the desired screening level. For more information see Screening Tables 1 and 2.

www.interpoint.com Page 6 of 19

28 VOLT INPUT - 15 WATT

Electrical Characteristics: -55° to +125°C T_C , 28 VDC Vin, 100% load, free run, unless otherwise specified.

SINGLE OUTP	UT MODELS	МІ	-IV283R	3S	М	IHV2805	is	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		3.23	3.30	3.37	4.90	5.00	5.10	VDC
OUTPUT CURRENT	V _{IN} = 16 TO 50 VDC	0	_	3.03	0	_	3.00	Α
OUTPUT POWER	V _{IN} = 16 TO 50 VDC	0	_	10	0	_	15	W
OUTPUT RIPPLE	10 KHz - 2 MHz	_	5	25	_	5	25	mV p-p
LINE REGULATION	V _{IN} = 16 то 50 VDC	_	0	10	_	0	10	mV
LOAD REGULATION	NO LOAD TO FULL	_	15	35	_	15	45	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	16	28	50	VDC
NO LOAD TO FULL	TRANSIENT 120 ms ¹	_	_	80	_	_	80	V
INPUT CURRENT	NO LOAD	_	34	45	_	44	55	mA
	INHIBITED	_	8.4	10	_	8.4	10	1101
INPUT RIPPLE CURRENT	10 KHz - 10 MHz	_	10	45	_	10	40	mA p-p
EFFICIENCY		68	72	_	73	77	_	%
LOAD FAULT ²	POWER DISSIPATION SHORT CIRCUIT	_	_	7.5	_	_	9	W
	RECOVERY 1	_	_	20	_	_	20	ms
STEP LOAD RESPONSE ³	50% - 100% - 50% TRANSIENT	_	_	±350	_	_	±350	mV pk
	RECOVERY	_	_	1.2	_	_	2	ms
STEP LINE RESPONSE ^{1, 4}	16 - 50 - 16 VDC TRANSIENT	_	_	±175	_	_	±550	mV pk
	RECOVERY	_	_	0.90	_	_	2.0	ms
START-UP	DELAY	-	14	20	_	14	20	ms
	OVERSHOOT 1	_	0	150	_	0	100	mV pk
CAPACITIVE LOAD ¹	25°C	_	_	200	-	-	200	μF

Notes

Page 7 of 19 www.interpoint.com

^{1.} Guaranteed by design, not tested.

^{2.} Load fault is a short circuit (<50 m $\!\Omega\!$). Recovery is into a resistive load.

^{3.} Step load transition \geq 10 μ s. Recovery = time to settle to within 1% of V_{OUT} final value. 4. Step line transition \geq 10 μ s. Recovery = time to settle to within 1% of V_{OUT} final value.

28 VOLT INPUT - 15 WATT

Electrical Characteristics: -55° to +125°C T_C , 28 VDC Vin, 100% load, free run, unless otherwise specified.

SINGLE OUTP	UT MODELS	M	HV2812	.S	M	HV2815	iS	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		11.76	12.00	12.24	14.70	15.00	15.30	VDC
OUTPUT CURRENT	V _{IN} = 16 TO 50 VDC	0	_	1.25	0	_	1.00	Α
OUTPUT POWER	V _{IN} = 16 TO 50 VDC	0	_	15	0	_	15	W
OUTPUT RIPPLE	10 кНz - 2 МНz	_	5	25	ı	5	25	mV p-p
LINE REGULATION	V _{IN} = 16 то 50 VDC	_	1	12	_	4	13	mV
LOAD REGULATION	NO LOAD TO FULL	_	8	35	_	10	35	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	16	28	50	VDC
NO LOAD TO FULL	TRANSIENT 120 ms ¹	_	_	75	_	_	60	V
INPUT CURRENT	NO LOAD	_	43	58	_	45	62	mA
	INHIBITED	_	8.4	10	_	8.4	10	
INPUT RIPPLE CURRENT	10 KHZ - 10 MHZ	_	10	40	_	10	40	mA p-p
EFFICIENCY		78	81	-	78	81	_	%
LOAD FAULT ²	POWER DISSIPATION SHORT CIRCUIT	_	_	7.5	_	_	7.5	W
	RECOVERY 1	_	_	20	_	_	20	ms
STEP LOAD RESPONSE ³	50% - 100% - 50% TRANSIENT	_	_	±400	_	_	±550	mV pk
	RECOVERY	_	_	1.5	_	_	1.5	ms
STEP LINE RESPONSE ^{1, 4}	16 - 50 - 16 VDC TRANSIENT	_	_	±550	_	_	±650	mV pk
	RECOVERY	_	_	2.5	_	_	2.5	ms
START-UP	DELAY	_	14	20	_	14	20	ms
	OVERSHOOT 1	_	0	240	_	0	300	mV pk
CAPACITIVE LOAD ¹	25°C	_	_	200	-	-	200	μF

- 1. Guaranteed by design, not tested.
- 2. Load fault is a short circuit (<50 m Ω). Recovery is into a resistive load.
- 3. Step load transition \geq 10 μ s. Recovery = time to settle to within 1% of V_{OUT} final value. 4. Step line transition \geq 10 μ s. Recovery = time to settle to within 1% of V_{OUT} final value.

Page 8 of 19 www.interpoint.com

28 VOLT INPUT - 15 WATT

Electrical Characteristics: -55° to +125°C T_C , 28 VDC Vin, 100% load, free run, unless otherwise specified.

DUAL OUTPU	JT MODELS	N	/IHV2805	D	1	MHV2812	D	MHV2815D		D	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	±V _{OUT}	4.90	5.00	5.10	11.76	12.00	12.24	14.70	15.00	15.30	VDC
OUTPUT CURRENT	EACH OUTPUT	0	_	1.5	0	_	0.625	0	_	0.50	Α
V _{IN} = 16 TO 50 VDC	TOTAL	-	_	3	_	_	1.25	_	-	1.0] ,
OUTPUT POWER ²	EACH OUTPUT	0	_	7.5	0	_	7.5	0	_	7.5	w
V _{IN} = 16 TO 50 VDC	TOTAL	_	_	15	_	_	15	_	_	15	
OUTPUT RIPPLE	±V _{OUT} , 10 KHz - 2 MHz	_	5	35	_	5	25	_	10	50	mV p-p
LINE REGULATION BALANCED LOADS	VIN = 16 TO 50 VDC	_	0	10	_	0	10	_	0	10	mV
LOAD REGULATION BALANCED LOADS	NO LOAD TO FULL	_	5	20	_	2	20	_	2	20	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	16	28	50	16	28	50	VDC
IN OT VOLTAGE	TRANSIENT 120 ms ¹	_	_	80	_	_	75	_	_	60	V
INPUT CURRENT	NO LOAD	_	22	30	_	32	43	_	37	50	_
	INHIBITED	_	8.4	10	_	8.4	10	_	8.4	10	mA
INPUT RIPPLE CURRENT	10 KHz - 10 MHz	_	5	40	_	5	40	_	10	45	mA p-p
EFFICIENCY		75	79	_	79	83	_	78	83	_	%
LOAD FAULT ³	POWER DISSIPATION SHORT CIRCUIT	_	_	8.5	_	_	10	_	_	10	w
	RECOVERY 1	_	_	20	_	_	25	_	_	30	ms
STEP LOAD RESPONSE ⁴ BALANCED LOADS	50% - 100% - 50% TRANSIENT	_	_	±350	_	_	±400	_	_	±500	mV pk
	RECOVERY	_	_	3.0	_	_	1.5	_	_	1.5	ms
STEP LINE RESPONSE ^{1, 5}	16 - 50 - 16 V _{IN} TRANSIENT	_	_	±400	_	_	±500	_	_	±500	mV pk
±V _{OUT}	RECOVERY	_	_	4.0	_	_	3.0	_	_	3.0	ms
START-UP	+V _{OUT} DELAY	_	10	18	_	10	20	_	12	22	ms
VIN = 40 V	-V _{OUT} DELAY	_	10	20	_	10	25	_	12	30	
	OVERSHOOT 1	_	0	100	_	0	240	_	0	300	mV pk
CAPACITIVE LOAD 1	25°C	_	–	100	_	_	100	_	–	100	μF

- 1. Guaranteed by design, not tested.
- 2. Up to 7.5 watts is available from either output. 3. Load fault is a short circuit (<50 m Ω). Recovery is into a resistive load.
- 4. Step load transition \geq 10 μ s. Recovery = time to settle to within 1% of V_{OUT} final value.
- 5. Step line transition \geq 10 μ s. Recovery = time to settle to within 1% of V_{OUT} final value.

www.interpoint.com

28 VOLT INPUT - 15 WATT

Electrical Characteristics: -55 $^{\circ}$ to +125 $^{\circ}$ C T_C, 28 VDC Vin, 100 $^{\circ}$ load, free run, unless otherwise specified.

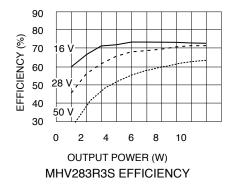
TRIPLE OUTPUT MODEL -	MHV28512T	Ę	5 (MAIN	1)	±12 (±12 (AUXILIARIES)		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	MAIN AND POS. AUX	4.90	5.00	5.10	11.76	12.00	12.24	VDC
	NEG. AUX.				-11.70	-12.00	-12.30	
OUTPUT CURRENT ²		0	_	2.0	0	±0.208	0.333 ¹	Α
	TOTAL	_	_	_	_	_	0.416	,,
OUTPUT POWER ³		0	_	10	0	±2.50	4.00 ¹	W
V_{IN} = 16 TO 50 VDC	TOTAL	_	_	_	_	_	5	**
OUTPUT RIPPLE	10 KHZ - 2 MHZ	_	8	22	_	9	22	mV p-p
LINE REGULATION	MAIN AND POS. AUX	_	0	5	_	5	35	mV
V _{IN} = 16 TO 50 VDC	NEG. AUX.				_	7	40	1114
LOAD REGULATION ⁴	MAIN AND POS. AUX	_	10	20	_	10	30	
	NEG. AUX.	_	_	_	_	40	70	mV
CROSS REGULATION 5	EFFECT ON NEGATIVE AUXILIARY	_	_	_	_	400	800	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	_	_	_	VDC
	TRANSIENT 120 ms ¹	_	_	80	_	_	_	V
INPUT CURRENT	NO LOAD	_	30	37	_	_	_	mA
	INHIBITED	_	8.4	10	_	_	_	1111
INPUT RIPPLE CURRENT	10 kHz - 10 MHz	_	10	30	_	_	_	mA p-p
EFFICIENCY		74	78	_	_	_	_	%
LOAD FAULT ⁶	POWER DISSIPATION	_	_	9.5	_	_	9.5	W
	RECOVERY 1	_	_	25	_	_	25	ms
STEP LOAD RESPONSE 7	TRANSIENT	_	_	±350	_	_	±600	mV pk
	NEG. AUX. ¹	_	_		_		±600	mv pix
	RECOVERY	_	_	3	_		4	ms
	NEG. AUX. ¹	_	_	_	_		4	
STEP LINE RESPONSE ^{1, 8}	16 - 50 - 16 V _{IN} TRANSIENT	_	_	±400	_	_	±500	mV pk
	RECOVERY	_	_	3	_	_	4	ms
START-UP	DELAY	_	7	15	_	7	15	ms
	OVERSHOOT ¹	_	_	100	_	_	240	mV pk
CAPACITIVE LOAD 1	25°C	_	_	200	-	_	100	μ F

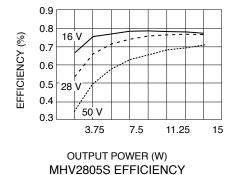
Notes for Triple Output Models

- 1. Guaranteed by design, not tested.
- 2. The sum of the 12 volt auxiliary output currents may not exceed 416 mA.
- 3. The sum of the auxiliary output power may not exceed 5 watts. Up to 80% of the total power (5W) is available from either auxiliary providing the opposite auxiliary is carrying 20% of the total auxiliary power used.
- 4. Load regulation for the +5 is specified at 0.0 to 2.0 A with the aux. both held at 2.5 W (208 mA). Load regulation for the auxiliary. is specified as both auxiliaries from 0.0 to 2.5 W (208 mA) at the same time with the +5 held at 2.0 A.
- 5. Cross regulation occurs between the two auxiliaries and is measured on –aux. +5 is held constant at 2.0 A. Cross regulation is specified for two conditions:
- A. Positive aux. = 2.5 W (50%); negative aux. = 2.5 W to 0.5 W (50% to 10%).
- B. From +Po = 70% and -Po = 30% to + Po = 30% and -Po = 70%. Above conditions are referenced to 50%/50% balanced loads.
- 4. Load regulation for the +5 is specified at 0.0 to 2.0 A with the aux. both held at 2.5 6. Load fault is a short circuit (<50 mΩ). Recovery is into a resistive load.
 - 7. Step load transition \geq 10 μ s. Recovery = time to settle to within 1% of V_{OUT} final value.
 - 8. Step line transition \geq 10 μ s. Recovery = time to settle to within 1% of V_{OUT} final value.

28 VOLT INPUT - 15 WATT

Electrical Characteristics: -55° to +125°C T_C, 28 VDC Vin, 100% load, free run, unless otherwise specified.

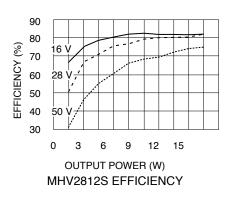
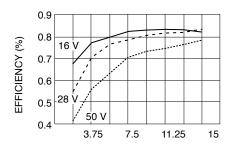

TRIPLE OUTPUT MODEL -	MHV28515T		5 (MAIN)	±15	(AUXILIA	ARIES)	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	MAIN AND POS. AUX	4.90	5.00	5.10	14.70	15.00	15.30	VDC
	NEG. AUX.				-14.62	-15.00	-15.38	100
OUTPUT CURRENT ²		_	_	2.0	0	±0.167	0.267 ¹	Α
	TOTAL	_	_	_	_	_	0.333	
OUTPUT POWER 3		0	_	10	0	±2.50	4.00 ¹	w
V _{IN} = 16 TO 50 VDC	TOTAL	_	_	_	_	_	5	•
OUTPUT RIPPLE	10 KHz - 2 MHz	_	8	22	_	9	22	mV p-p
LINE REGULATION	MAIN AND POS. AUX	_	0	5	_	7	35	mV
V _{IN} = 16, 50 VDC	NEG. AUX.				-	7	40	IIIV
LOAD REGULATION ⁴	MAIN AND POS. AUX	_	10	20	_	10	30	
	NEG. AUX.	_	_	_	_	40	80	mV
CROSS REGULATION ⁵	EFFECT ON NEGATIVE AUXILIARY	_	_	_	_	400	800	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	_	_	_	VDC
	TRANSIENT 120 ms ¹	_	_	80	_	_	_	V
INPUT CURRENT	NO LOAD	_	34	41	-	_	_	mA
	INHIBITED	_	8.4	10	_	_	_	ША
INPUT RIPPLE CURRENT	10 kHz - 10 MHz	_	10	30	_	_	_	mA p-p
EFFICIENCY		74	78	_	_	_	_	%
LOAD FAULT ⁶	POWER DISSIPATION	_	_	9.5	_	_	9.5	W
	RECOVERY 1	_	_	25	_	_	25	ms
STEP LOAD RESPONSE 7	TRANSIENT	_	_	±350	_	_	±600	mV pk
	NEG. AUX. 1	_	_	_	_	_	±600	mv pr
	RECOVERY	_	_	3	_	_	4	ms
	NEG. AUX. ¹	_	_	_	_	_	4	
STEP LINE RESPONSE 1, 8	16 - 50 - 16 V _{IN} TRANSIENT	_	-	±400	_	-	±500	mV pk
	RECOVERY	_	_	3	_	_	4	ms
START-UP	DELAY	_	_	15	_	_	15	ms
	OVERSHOOT ¹	_	_	100	_	_	300	mV pk
CAPACITIVE LOAD 1	25°C	-	_	200	-	_	100	μ F


Notes for Triple Output Models

- 1. Guaranteed by design, not tested.
- 2. The sum of the 15 volt auxiliary output currents may not exceed 333 mA.
- 3. The sum of the auxiliary output power may not exceed 5 watts. Up to 80% of the total power (5W) is available from either auxiliary providing the opposite auxiliary is carrying 20% of the total auxiliary power used.
- 4. Load regulation for the +5 is specified at 0.0 to 2.0 A with the aux. both held at 2.5 W (167 mA). Load regulation for the auxiliary. is specified as both auxiliaries from 0.0 to 2.5 W (167 mA) at the same time with the +5 held at 2.0 A.
- 5. Cross regulation occurs between the two auxiliaries and is measured on –aux. +5 is held constant at 2.0 A. Cross regulation is specified for two conditions:
 - A. Positive aux. = 2.5 W (50%); negative aux. = 2.5 W to 0.5 W (50% to 10%).
 - B. From +Po = 70% and -Po = 30% to + Po = 30% and -Po = 70%. Above conditions are referenced to 50%/50% balanced loads.
- 6. Load fault is a short circuit (<50 m Ω). Recovery is into a resistive load.
- 7. Step load transition \geq 10 μ s. Recovery = time to settle to within 1% of V_{OUT} final value
- 8. Step line transition \geq 10 μ s. Recovery = time to settle to within 1% of V_{OUT} final value.

28 VOLT INPUT - 15 WATT

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, 20 MHz BW, free run, unless otherwise specified.

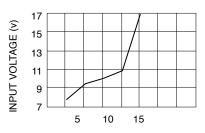
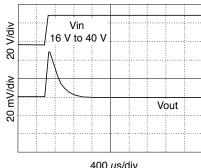
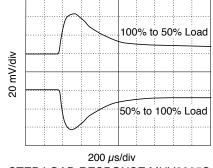


FIGURE 8

FIGURE 9


OUTPUT POWER (W) MHV2815D EFFICIENCY


OUTPUT POWER (W) LOW LINE DROPOUT vs. LOAD MHV283R3S

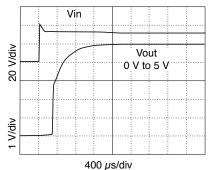


FIGURE 11

FIGURE 12

STEP LINE RESPONSE MHV2805S

STEP LOAD RESPONSE MHV2805S

TURN ON RESPONSE MHV2805S

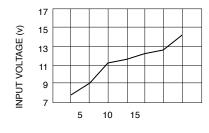
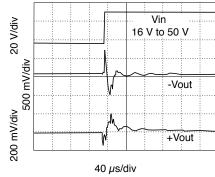

FIGURE 13

FIGURE 14

FIGURE 15


28 VOLT INPUT - 15 WATT

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, 20 MHz BW, free run, unless otherwise specified.

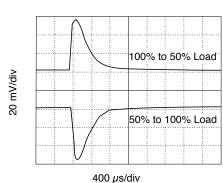

OUTPUT POWER (W) LOW LINE DROPOUT vs. LOAD MHV2805S

FIGURE 16

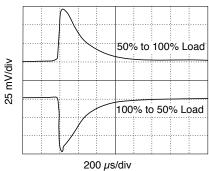

STEP LINE RESPONSE MHV2815D

FIGURE 17

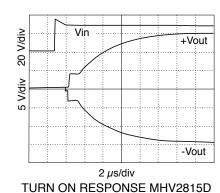
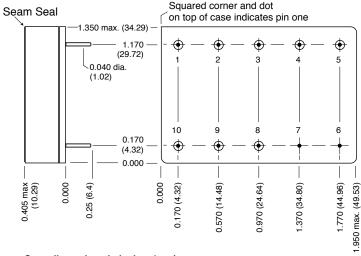

+Vout STEP LOAD RESPONSE MHV2815D

FIGURE 18

-Vout STEP LOAD RESPONSE MHV2815D

FIGURE 19


17 INPUT VOLTAGE (v) 15 13 11 9 5 10 15

OUTPUT POWER (W) LOW LINE DROPOUT vs. LOAD MHV2815D

FIGURE 20 FIGURE 21

28 VOLT INPUT - 15 WATT

BOTTOM VIEW CASE F1 - MHV Triple

Case dimensions in inches (mm)

Tolerance ± 0.005 (0.13) for three decimal places ± 0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

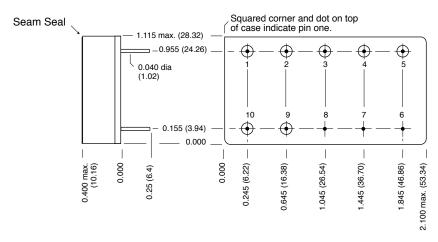
Materials

Header Cold Rolled Steel/Nickel/Gold

Cover Kovar/Nickel

Pins #52 alloy/Gold, ceramic

Seal hole 0.124 ±0.002 (3.15 ± 0.05)


Case F1 MHV T, Rev F, 20100503

Please refer to the numerical dimensions for accuracy.

FIGURE 22: CASE F1- MHV TRIPLE

28 VOLT INPUT - 15 WATT

BOTTOM VIEW CASE H2 - MHV Single and Dual

Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header Cold Rolled Steel/Nickel/Gold

Cover Kovar/Nickel

Pins #52 alloy/Gold, ceramic glass seal

Seal hole $0.120 \pm 0.002 (3.05 \pm 0.05)$

Case H2 MHV S&D, Rev G - 20100503

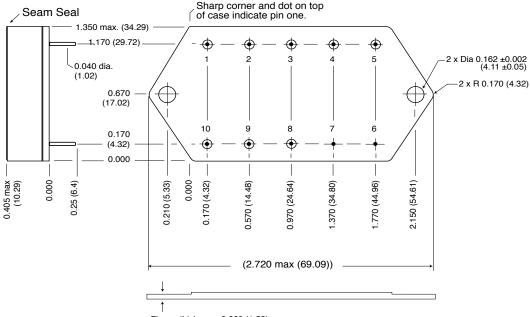

Please refer to the numerical dimensions for accuracy.

FIGURE 23: CASE H2 - MHV SINGLE AND DUAL

28 VOLT INPUT - 15 WATT

BOTTOM VIEW CASE J1 - MHV Triple

Flanged cases: Designator "F" required in Case Option position of model number.

Flange thickness: 0.060 (1.52)

Case dimensions in inches (mm)

Tolerance ± 0.005 (0.13) for three decimal places ± 0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header Cold Rolled Steel/Nickel/Gold

Cover Kovar/Nickel

Pins #52 alloy/Gold, ceramic seal

Seal hole 0.120 ±0.002 (3.05 ± 0.05)

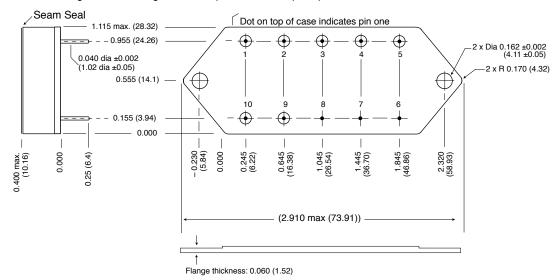

Case J1 MHV T F, Rev E, 20100503

FIGURE 24: CASE J1 - MHV TRIPLE

28 VOLT INPUT - 15 WATT

BOTTOM VIEW CASE K3 - MHV Single and Dual

Flanged cases: Designator "F" required in Case Option position of model number.

Case dimensions in inches (mm)

Tolerance ± 0.005 (0.13) for three decimal places ± 0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header Cold Rolled Steel/Nickel/Gold

Cover Kovar/Nickel

Pins #52 alloy/Gold, ceramic seal

Seal hole $0.120 \pm 0.002 (3.05 \pm 0.05)$

Case K3 MHV S&D F, Rev G, 20100503

Please refer to the numerical dimensions for accuracy.

FIGURE 25: CASE K3 - MHV SINGLE AND DUAL

28 VOLT INPUT - 15 WATT

STANDARD AND /ES (NON-QML) AND /883 (CLASS H, QML) PRODUCT ELEMENT EVALUATION

COMPONENT-LEVEL TEST PERFORMED	STANDAR NON-0			83 H QML
	M/S ²	P 3	M/S ²	P 3
Element Electrical (probe)	yes	no	yes	yes
Element Visual	no	no	yes	yes
Internal Visual	no	N/A	yes	N/A
Final Electrical	no	no	yes	yes
Wire Bond Evaluation ⁴	no	no	yes	yes
SLAM™/C-SAM: Input capacitors only (Add'l test, not req. by H)	no	no	no	yes

Notes:

- Standard and /ES, non-QML products, do no meet all of the requirements of MIL-PRF-38534.
- 2. M/S = Active components (Microcircuit and Semiconductor Die)
- 3. P = Passive components
- 4. Not applicable to EMI filters that have no wire bonds.

Definitions:

Element Evaluation: Component testing/screening per MIL-STD-883 as determined by MIL-PRF-38534 SLAM™: Scanning Laser Acoustic Microscopy

C-SAM: C - Mode Scanning Acoustic Microscopy

SCREENING TABLE 1: ELEMENT EVALUATION

www.interpoint.com Page 18 of 19

MHV Rev E - 20100503

28 VOLT INPUT - 15 WATT

STANDARD AND /ES (NON-QML) AND /883 (CLASS H, QML) PRODUCT ENVIRONMENTAL SCREENING

TEST PERFORMED	125°C STANDARD	125°C /ES	/883
	NON-QML ¹	NON-QML ¹	CLASS H QML
Pre-cap Inspection Method 2017, 2032	yes	yes	yes
Temperature Cycle (10 times) Method 1010, Cond. C, -65°C to 150°C, ambient Method 1010, Cond. B, -55°C to 125°C, ambient	no	no	yes
	no	yes	no
Constant Acceleration Method 2001, 3000 g Method 2001, 500 g	no no	no yes	yes no
Burn-in ² Method 1015, 125°C case, typical 96 hours 160 hours	no	yes	no
	no	no	yes
Final Electrical Test MIL-PRF-38534, Group A Subgroups 1 through 6: -55°C, +25°C, +125°C case Subgroups 1 and 4: +25°C case	no	no	yes
	yes	yes	no
Hermeticity Test Fine Leak, Method 1014, Cond. A Gross Leak, Method 1014, Cond. C Gross Leak, Dip (1 x 10 ⁻³)	no	yes	yes
	no	yes	yes
	yes	no	no
Final visual inspection Method 2009	yes	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes:

1. Standard and /ES, non-QML products, do not meet all of the requirements of MIL-PRF-38534.

2. Burn-in temperature designed to bring the case temperature to $+125^{\circ}\text{C}$

SCREENING TABLE 2: ENVIRONMENTAL SCREENING

